THE RHIC SPIN PROGRAM THE QUEST FOR THE SPIN OF THE PROTON

How do the partons form the spin of protons

Is the proton looking like this?

"Helicity sum rule"

$$\frac{1}{2}\hbar = \left\langle P, \frac{1}{2} | J_{QCD}^{z} | P, \frac{1}{2} \right\rangle = \sum_{q} \frac{1}{2} S_{q}^{z} + S_{g}^{z} + \sum_{q} L_{q}^{z} + L_{g}^{z}$$

total u+d+s quark spin

gluon

angular momentum Where do we stand solving the "spin puzzle"?

The Gluon Polarization

unpolarised cross sections nicely reproduced in NLO pQCD

Does QCD work: Cross Sections

BROOKHAVEN NATIONAL LABORATORY

Δg and the relevance of RHIC data

0.2

0.2

-0.2

-0.2

x-range: 0.05-0.2

DSSV- (DIS+SIDIS)-

 $\Delta g^{1, [0.05-0.2]}$

DSSV- (DIS+SIDIS)

x-range: 0.2-1.0

DSSV

SIDIS*

 $\Delta g^{1, [0.05-0.2]}$

DSSV-

DIS SIDIS³

 $\Delta g^{1, [0.2-1.0]}$

--- DIS

DSSV+

 $\Delta \chi_i^2$

 $\Delta \chi_i^2$

10

10

0.2

0.2

truncated moment ("RHIC pp region")

DSSV: Phys.Rev.D80:034030,2009 DSSV+: DSSV+new DIS/SIDIS data

truncated moment ("high x")

- $\Delta g^{1,\,[\,0.2\text{-}1.0\,]}$ \square RHIC pp data clearly needed (current DIS+SIDIS data alone do not constrain $\triangle g$)
- \square new (SI)DIS data do not change much for $\triangle g$

390

385

380

390

385

380

 χ^2

-0.2

 \Box trend for positive Δg at large x (as before)

-0.2

bottom line:

Much more data on tape and to come

- □ Increased \(\square \) allows to go to lower \(\times \)
 □ Different final states select between
 - Different final states select between gg and qg scattering
 - → sign of \(\Delta g \)
- Future measurements will include di-hadron at forward rapidity
 - \rightarrow constrain \times and to go to lower \times

-0.002 3.1<η<3.8

challenge relative luminosity measurement

STAR Much more data on tape and to come

Δq: W Production Basics

Since W is maximally parity violating

 \rightarrow W's couple only to one parton helicity large Δu and Δd result in large asymmetries.

No Fragmentation!

$$u\overline{d} \rightarrow W^{+}$$

$$d\overline{u} \rightarrow W^-$$

$$A_{L}^{W^{+}} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \sim \frac{\Delta \overline{d}(x_{1})u(x_{2}) - \Delta u(x_{1})\overline{d}(x_{2})}{\overline{d}(x_{2})u(x_{1}) + \overline{d}(x_{1})u(x_{2})}$$

Similar expression for W to get $\Delta \bar{\boldsymbol{u}}$ and Δd ...

expectations for A_{L}^{e} in pp collisions

RHIC: A_L for W bosons

□ RHIC: can detect only decay leptons; lepton rapidity most suited observable

• strong correlation with $x_{1,2}$

$$\langle x_{1,2} \rangle \sim \frac{M_W}{\sqrt{s}} e^{\pm \eta/2}$$

 \square allows for flavor separation for 0.07 < \times < 0.04

BROOKHAVEN

A_L^W: Future Data

\square will/have extend/extended rapidity from -1< η <1 to -2< η <2

A_L^W: Future Possibilities

- Can we increase p-beam energy?
 - ♦ 325 GeV: factor 2 in σ_W
 - lacktriangle access to lower x for $\Delta g(x)$
- □ Increased beam-energy and polarized He-3 beam → full flavor separation

phase 2 of pp2pp@STAR can separate scattering on n or p

Quantum phase-space tomography of the nucleon

Wigner Distribution $W(x,r,k_t)$

Join the real 3D experience!!

3D picture in momentum space transverse momentum dependent distributions

3D picture in coordinate space generalized parton distributions

→ exclusive reaction like DVCS

More insights to the proton - TMDs

Unpolarized distribution function q(x), G(x)

Transversity distribution function $\delta q(x)$ Correlation between \vec{S}_{\perp}^{q} and \vec{S}_{\perp}^{N}

> beyond collinear picture Explore spin orbit correlations

Helicity distribution function $\Delta q(x)$, $\Delta G(x)$

Boer-Mulders distribution function h_1^\perp Correlation between $ec{s}_\perp^{\ q}$ and $ec{k}_\perp^{\ q}$

chiral even naïve T-odd DF
related to parton orbital angular
momentum
violates naïve universality of PDFs
QCD-prediction: $f^{\perp}_{1T,DY} = -f^{\perp}_{1T,DIS}$

Sivers distribution function f_{1T}^{\perp} Correlation between \vec{S}_{\perp}^{N} and \vec{k}_{\perp}^{q}

Asymmetries

Sing-e

Transverse single-spin asymmetries

Transverse single-spin asymmetries: Near Future

□ Test p_t dependence

What is seen at RHIC

No strong dependence on √s from 19.4 to 200 GeV

- \checkmark Spread probably due to different acceptance in pseudorapidity and/or p_T
- √ x_F ~ ⟨z⟩P_{jet}/P_L ~ x : shape induced by shape of Collins/Sivers
- \checkmark Sign also consistent with Sivers and/or Transversity x Collins

need other observables to disentangle underlying processes !!!!

Do we really understand the theory ???

E.C. Aschenauer

BROOKHAVEN

RHIC S&T Review 2011

from sign changes to sign mismatches

• latest twist: "sign mismatch" Kang, Qiu, Vogelsang, Yuan

 1^{st} k_T moment of Sivers fct and twist-3 analogue related at operator level

$$gT_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M}$$

Boer, Mulders, Pijlman; Ji, Qiu,, Vogelsang, Yuan

both sides have been extracted from data find: similar magnitude √but wrong sign ₩

inconsistency in formalism?

- possible resolutions: (1) data constrain Sivers fct only at low k_T ; function has a node phenomenological studies with more flexible Sivers fct. under way

 Kang, Prokudin
 - (2) analysis of $T_{q,F}$ neglects possible final-state contributions to A_N need data for A_N which are insensitive to fragmentation: photons, jets, DY
- on the bright side: recent progress on evolution for Sivers fct Kang, Xiao, Yuan crucial for consistent phenomenology properly related experiments at different scales

New Global Fit

Parameterization:

 $f_{1T}^{\perp q} \sim \chi^{\alpha_q} (1-\chi)^{\beta_q} (1-\eta_q \chi)$ shape ala DSSV node if $\eta_q > 0$ Data-Input: HERMES and COMPASS SIDIS & STAR π^0

ANDY @ IP-2

Run11 Goal (1) - 3IR impact

Fri. 8 April

IP2 collisions have begun <3 hours after physics at 1.50×10¹¹/bunch

 A_N DY got ~ 6.5/pb in run11 with β *=3m

Run11 Goal (2) - HCal calibration

HCal without ECal in front = π^0 in Hcal

- □ 20M BBC collision data and 20M simulations events (PYTHIA+GEANT)
- Requirements:
 - (1) 1-tower clusters;
 - (2) E>1.8 GeV;
 - (3) |x| > 50 cm to avoid ECal shadow;
 - (4) >1 clusters to form pairs;
 - (5) E_{pair} > 5 GeV;
- (6) M_{pair}^{color} <0.5 GeV; and (7) z_{pair} <0.5. Hadronic response also under study with prospects for $\rho^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ and $\omega \rightarrow \pi^+\pi^-\pi^0$ to correct h/ γ differences

Run11 Goal (3): A_N for jets

□ With ~10/pb & P=50%, A_N DY run11 can measure A_N (Jet).

Determine whether $A_N(jet)$ is non-0 is a requirement for $A_N(DY)$ sign-flip measurement

The long term future future of pp@RHIC

A_N in ³He-proton collisions

BROD

Sivers fcts. for u and d quarks opposite in sign and slightly larger for d quarks expectations for Drell Yan Z. Kang @ 2010 Iowa RSC meeting

- u <-> d isospin rotation leads to different signs for A_N for protons and neutrons
- asymmetries for neutrons are larger (due to electric charges)

this time computed within twist-3 formalism

here, effect due to favored/unfavored fragmentation

Detector Developments: PHENIX

Detector Developments: STAR

Forward instrumentation optimized for p+A and transverse spin physics

- √Charged-particle tracking
- \checkmark e/h and γ/π^0 discrimination
- ✓Baryon/meson separation

Summary: RHIC Spin Program

HP-12 2013

Active program with many new developments in theory and experiments

On track to achieve mile-stones

THE RHIC SPIN GROUP

News from the Group

- Changes in group personnel
 - ◆ Dr. Gerry Bunce retired in 2008
 - E.C. Aschenauer replaced Dr. Bunce in March 2009
 - Dr. R. Gill left the group, because he became the full time safety officer for Daya Bay and LBNE
 - ◆ Dr. B. Morozov will left the group 30th of June 2010
 - Dr. Morozov was be replaced in October 2010 by Dr. W. Schmidke from ZEUS@DESY (tenure track)
 - The new tenure candidate concentrates on operating the polarimeters, to further develop
 - Current size of the group:
 - 4 PostDocs (2 DOE & 2 Director funds)
 - Dr. A. (5 physicists (3 tenured and 2 continuing appointment)
 - job 1 tenure track scientist

rt to interview

- Hired two PostDocs D. Smirnov from DO@Fermilab and Alan Dion from PHENIX@BNL to work on polarimetry and physics analysis
 - they joined the group in August and September 2010
 - both postdocs are involved in the core spin physics program of STAR
- Dr. Th. Burton (Dec 09) and Dr. S. Fazio (Jul. 10) hired as Postdocs for EIC (75%) and RHIC Spin (25% STAR-spin)
 - both PostDocs are funded from BNL laboratory development funds
- ♦ Hire one more postdoc from LDRD funds for Si-Pixel R&D

The RHIC SPIN Group

Polarimetry

Les Bland Akio Ogawa Wlodzimierz Guryn Elke-C. Aschenauer Alexander Bazilevsky

Elke-C. Aschenauer Alexander Bazilevsky Les Bland Akio Ogawa

Elke-C. Aschenauer Alexander Bazilevsky

Since 2010/2011 Alan Dion William B. Schmidke Dimitri Smirnov

Elke-C. Aschenauer Thomas P Burton Salvatore Fazio Wlodzimierz Guryn new LDRD-postdoc for Si-pixel R&D

Since 2010/2011 Thomas P Burton Alan Dion Salvatore Fazio William B. Schmidke Dimitri Smirnov

Hardware responsibilities BBC, FMS-Calib.

Roman Pots of pp2pp

Physics goals:

Forward Physics in dAu luon saturation → CGC

Single Spin Asymmetries $A_N \rightarrow Jet, W, Di-jet$

pp2pp: diffractive physics & glueball searches Physics goals:

 ΔG & cross section via π^0 , A_NDY

A_L W-physics Drell-Yan in pp

AB (>2005) & ECA (>2009) Organizing the RSC meetinas A. Bazilevsky:

Trigger coordinator Run1

Hardware responsibilities:

Design, Setup, commissioning and running Hardware responsibilities:

Physics goals:

Measure sign change for the Sivers fct. between DIS and DY

Develop requirements for DY measurements Star & PheniX for pp and dAu

pC polarimeters, H-Jet detectors Improvements of the Polarimeters

DAQ

Physics goals: Offline analysis of polarimeter data → final polarization

Feedback to CAD to improve polarization in RHIC

>for experiments

Responsibilities:

Detector Design and IR integration hadron polarimetry "Roman Pots" Software tools

Physics goals:

Develop physics case for ep (pol/unpol)

ECA Co-convener of the BNL EIC-TF

ECA:

decadal plan: spin physics and

forward arm new detector

ePHENIX

BROOKHEVEN

· Postdocs: funded by LDRDs and Director's Funds

RHIC S&T Review 2011 · Postdocs: funded by DOE ME

Group Achievements

- □ Promotions:
 - ◆ Dr. A. Bazilevsky received tenure in 2009
 - ◆ Dr. A. Ogawa received a continuing appointment in 2009
 - ◆ Dr. E.C Aschenauer received tenure in 2010
- □ Papers:
 - ◆ STAR:
 - 1 paper on polarized pp (10 citations)
 - PheniX:
 - 6 total papers on polarized pp (34 citations)
 - 1 with contributions from the RHIC Spin Group
 - ◆ Papers not on RHIC
 - 1 Belle; 13 HERMES
- □ ~57 Seminars and Presentations on Conferences and Workshops

RHIC SPIN GROUP PHYSICS HIGHLIGHTS

The PHNENIX π⁰ ALL

Analysis done by/under the leader ship of S. Bazilevsky

$$A_{LL} = \frac{1}{P_B P_Y} \frac{N^{++} - \frac{L^{++}}{L^{+-}} N^{+-}}{N^{++} + \frac{L^{++}}{L^{+-}} N^{+-}} \sim a_{gg} \Delta g^2 + b_{gq} \Delta g \Delta q + c_{qq} \Delta q^2$$

$$\frac{\Delta G}{G} \frac{\Delta G}{G} \qquad \frac{\Delta q}{q} \frac{\Delta G}{G} \qquad \frac{\Delta q}{q} \frac{\Delta q}{q} \qquad + \dots$$

PRD 76, 051106 (200 GeV - 2005) PRL 103, 12003 (200 GeV - 2006) PRD 79, 012003 (62 GeV - 2006)

E.C. Aschenauer

BROOKHAVEN

RHIC S&T Review 2011

$\sqrt{s}=500 \text{ GeV (Preliminary)}$

Signature for gluon saturation: di-hadron correlation

pQCD 2-2 process = back-to-back di-jet: (Works well for p+p)

Saturation / CGC 2 \rightarrow 1 (or 2 \rightarrow many or 1 \rightarrow many) process = Mono-jet

pQCD + shadowing:

Conventional shadowing changes yield, but not angular correlation

Dense gluonfield (Au)

P_T is not balanced by one parton, but something else (many gluons?) CGC predicts suppression of back-to-back correlation

RHIC: Signs of Saturation in dAu

Analysis done by L. Bland, A. Gordon & A. Ogawa

Away-side peaks evident in peripheral dAu and pp.

Near side peaks unchanged in dAu for peripheral to central.

Azimuthal decorrelations show significant dependence on centrality.

dAu peripheral

dAu Centra

38

STAR: Upcoming physics topics

Sampled Luminosity for STAR FY11 pp 500 Transverse data set

Nice data set to study

A_N - jet: → Sivers fct.

A_N for single lepton from W^{+/-}:

Sign change in Sivers fct. compared to SIDIS

A_N for dijets: Sivers fct. via back to back

imbalance of 2 jets

Analysis to be done by:

Thomas P Burton Alan Dion Salvatore Fazio William B. Schmidke Dimitri Smirnov

39

eRHIC involvement of the group

- □ The members of the group have been major players in the 2010 EIC INT program
 - simulation of pseudo-data for impact plots for the golden measurements
 - → DG, TMDs, GPDs
 - developed MC and root tools for the studies, i.e. TMD-MC, GPD-MC
 - provide detector acceptance studies
 - **.....**

Quantum phase-space tomography of the nucleon

Wigner Distribution $W(x,r,k_t)$

Join the real 3D experience!!

3D picture in momentum space transverse momentum dependent distributions

3D picture in coordinate space generalized parton distributions

→ exclusive reaction like DVCS

d-quark Polarized

Azimuthal angles and asymmetries

DVCS at eRHIC

Last but not least: RHIC Polarimetry

RHIC pC Setup Run-11

RHIC pC Results: Rate effects

Rate effects:

- □ Test pulse applied to all preamps ~500 Hz
- Monitor pulse rate, amplitude for rate effects:

RHIC pC Results

RHIC pC Results: Polarization Profile

If polarization changes across the beam, the average polarization seen by Polarimeters and Experiments (in beam collision) is different

$$\langle P_1 \rangle = P_1(x, y) \otimes I_1(x, y)$$
 $\langle P_1 \rangle = P_1(x_0, y) \otimes I_1(x_0, y)$ $\langle P_1 \rangle = P_1(x, y) \otimes I_1(x, y) \otimes I_2(x, y)$

 $P_{1,2}(x,y)$ - polarization profile, $I_{1,2}(x,y)$ - intensity profile, for beam #1 and #2

RHIC Jet Results

pJet and pC:

- > move to commercial Si detectors from Hamamatsu
 - > better E-resolution, cheaper, off the shelf
- > move to commercial VME based readout electronics
- → improve online analysis code and make it identical to offline pC:
- → main theme for future work improve stability
 - → improve in-situ calibration closer to C dE/dx
 - > better targets: movement and thickness stability
 - > measure to for ToF independent from Si-det.

pJet:

> preventative maintenance and increase stability

n at injection:

)48

mber:

-t [(GeV/c)2]

$$\frac{1}{P}\frac{N_L - N_R}{N_L + N_R} = \frac{\varepsilon}{P}$$

Beam Polar

0.52 0.52 0.52

0.48

0.44

0.42

0.4

0.38

Summary

□ Last 5 years:

- ◆ BNL RHIC Spin Group was leading the effort on
 - $lack \Delta g$ in PheniX
 - forward physics @ STAR
 - transverse spin physics
 - RHIC Polarimetry together with CAD

□ Next 5 (++) years:

- will concentrate on
 - core transverse program of RHIC spin program in STAR (HP13)
 - develop a DY program for RHIC
 - √ to measure the sign change for the Sivers fct. in SIDIS and DY (HP-13)
 - ✓ evaluate the possibility of quark distributions in dAu
 - ✓ determine the requirements for discussed future forward upgrades in STAR & PheniX
 → next decadal plan
 - work on the physics case for eRHIC
 - → TMDs, GPDs, helicity distributions
 - ⇒ possibilities for ep/eA collisions in PheniX and STAR
 - ♦ detector and IR design for eRHIC
 - RHIC Polarimetry

Spin is fascinating

Thank you for your attention

BACKUP

Collected Luminosity with longitudinal Polarization

Year	√s [GeV]	Recorded PHENIX	Recorded STAR	Pol [%]
2002 (Run 2)	200	/	0.3 pb ⁻¹	15
2003 (Run 3)	200	0.35 pb ⁻¹	0.3 pb ⁻¹	27
2004 (Run 4)	200	0.12 pb ⁻¹	0.4 pb ⁻¹	40
2005 (Run 5)	200	3.4 pb ⁻¹	3.1 pb ⁻¹	49
2006 (Run 6)	200	7.5 pb ⁻¹	6.8 pb ⁻¹	57
2006 (Run 6)	62.4	0.08 pb ⁻¹		48
2009 (Run9)	500	14 pb ⁻¹	10 pb ⁻¹	39
2009 (Run9)	200	16 pb ⁻¹	25 pb ⁻¹	55
2011 (Run11)	500	27.5 / 9.5pb ⁻¹	12 pb ⁻¹	~50%

Collected Luminosity with transverse Polarization

Year	√s [GeV]	Recorded PHENIX	Recorded STAR	Pol [%]
2001 (Run 2)	200	0.15 pb ⁻¹	0.15 pb ⁻¹	15
2003 (Run 3)	200	/	0.25 pb ⁻¹	30
2005 (Run 5)	200	0.16 pb ⁻¹	0.1 pb ⁻¹	47
2006 (Run 6)	200	2.7 pb ⁻¹	8.5 pb ⁻¹	57
2006 (Run 6)	62.4	0.02 pb ⁻¹		53
2008 (Run8)	200	5.2 pb ⁻¹	7.8 pb ⁻¹	45
2011 (Run11)	500	/	25 pb ⁻¹	~50

discussion - pros and cons

pros

polarized He-3 mainly a neutron target: $0.865 \, \text{n} + 2*(-0.027) \, \text{p}$

⇒important information for flavor separation complementary to pp

 $\Delta u, \Delta \bar{u} \leftrightarrow \Delta d, \Delta d$

cross section enhanced (nuclear "target")

cons

need maximum possible c.m.s. energy: 216 GeV protons on 216 GeV/n He-3 (feasible? - otherwise W cross section too small)

unpolarized He-3 a combination of p and n

 \rightarrow no longer probing $\Delta q/q$ as in pp; but irrelevant "complication" in a global analysis

O(few hundred pb-1) each; but some "synergy effects" of combined set in global fit

Much more data on tape and to come

Summary of the Existing Elastic Data

- □ Highest energy so far:
- □ pp: 62 GeV (ISR)
- □ pp: 1.8 TeV (Tevatron)
- □ RHIC energy range:
- Elastic measurements: Details on the nature of elastic scattering at high energy (Pomeron) are NOT well understood: Unique measurements in wide t-range with polarized beams

First high-statistics measurement of CNI at high-energy ($\sqrt{s}=200~GeV$)

Statistical errors + systematic t-scale uncertainty (10%) in the fit
 Higher-t reach planned from the upcoming √s=500 GeV (and with Phase II set-up) at RHIC

Hadronic Spin-Flip amplitude

pp2pp: RHIC 2003 **STAR**: RHIC 2009

□ Fit to the data with hadronic spin-flip (r5-fit)

$$r_5 = \operatorname{Re} r_5 + i \operatorname{Im} r_5 = \frac{m\phi_5}{\sqrt{-t} \operatorname{Im} \phi_+}$$
 relative amplitude between hadronic spin-flip (Φ_5) and non-flip (Φ_+) helicity amplitudes

No significant Hadronic spin-flip required in the fit

Forward Proton Tagging

DY Feasibility Test

- □ Staged
- ☐ Assumpti
 - **•** 1) ~4
 - 2) 12run 1
 - ◆ 3) 12 run 1
- □ Planned \$
 - Hcal estabHcal
 - Hcal of ze dilept
 - Hcal13 wiobserwheth
 - Lessons decadal plan upgrades for DY

in RHIC run 11 500 GeV in RHIC

500 GeV in RHIC

l with goals of e calibration of backgrounds

run 12 with goals =50% to observe

pole for RHIC run am=50% to um to address

heniX next

STAR forward detectors

FTPC (to be removed next year)

Proposed FHC (for jet & lambda)

≈ 6 L_{int} spaghetti calorimeter 10cm × 10cm × 120 cm "cells"

DX shell R ~ 60cm

DY Signal

Everything η>2 14799 events pythia6.222, p+p @ \sqrt{s} =500 DY process, 4M events/6.7E⁻⁰⁵mb ~ 60/pb e+/e- energy>10GeV & η >2 \times_F >0.1 (25GeV) 4GeV < invariant mass < 10GeV

FMS closed (FHC cannot be placed due to DX magnet)

6512 events

MS open (x=5ocm) FHC (x=6ocm)

1436 events (1/5 from closed)

Inv Mass

E

PT

Δq & ΔG contributions to the proton spin

Existing data from:

polarized DIS $\Sigma_q \Delta oldsymbol{q}$, $\Delta oldsymbol{G}$

to extract polarized PDFs
! a "global QCD analysis" is required !

- □ all processes tied together: universality of pdfs & Q² - evolution
- each reaction provides insights into different aspects and kinematics
- ☐ in NLO
 - **→ D55V** PRL101:072001,2008

Processes to study Single Spin Asymmetries

BROOKHAVEN NATIONAL LABORATORY

Star: Forward Physics program

□ add electromagnetic calorimetry at forward rapidity

Indcap EMC

ration

 $x \sim \frac{2p_T}{\sqrt{s}}e^{-y}$

TPC: -1.0 < \eta < 1.0
BEC: -1.0 < \eta < 1.0
Solenoid Magnet

2003: FPD: 3.3 < η < 4.1 2008: FMS: 2.5 < η < 4.1

A. Ogawa and A. Gordon very important

The RHIC Spin Group

Transverse Polarization Effects @ RHIC

PH^{*}ENIX

STAR Transverse Polarization Effects @ RHIC $p+p \rightarrow \pi^0 + X \sqrt{s} = 200 \text{ GeV}$ $p+p \rightarrow \pi^0 + X$ at $\sqrt{s} = 200$ GeV Left PRL 97, 152302 PRL 97, 152302 π° mesons 0.15 -Right Spin 1 3.7<η<4.15 </p> Spin ↓ $3.4 < \eta < 4.0$ Right Left ._. Sivers (HERMES fit) $3.05 < \eta < 3.45$ twist-30.1 0.25 0 0.25 $\gamma\gamma$ mass (GeV/c²) $< \eta > = 4.00$ 0.05 $<\eta>=3.7$ $<\eta>=3.3$ 10 NLO pQCD calc. 0.5 X_F 0.5 -0.510 $+p \rightarrow \text{jet}(\pi^{0}) + X \text{ at } \sqrt{s} = 200 \text{ GeV}$ **STAR** Phys. Rev. Lett. 101 (2008) 222001 $x_{\rm F}>+0.3$ (B) $A_{\mathbf{N}}$ $p+p \rightarrow \pi^0 + X$ at $\sqrt{s} = 200$ GeV • $x_{\rm f} < -0.3 \, (Y)$ $<x_{e}>=0.28$ $< x_{r}> = 0.32$ 0.08 Sivers (E704 fit) FPD data Preliminary results symmetric in $\langle \cos \Phi_h \rangle$ 0.04 $p+p \rightarrow \pi^0 + X$ at $\sqrt{s} = 200$ GeV .: no confirmed contribution 0.15 from Collins Effect • $x_{\rm F} > 0.4$ 0.05 0.1 A_{N 0.05} -0.05 -0.051.5 2.5 3.5 0.5 $p_{\scriptscriptstyle T}$, GeV/c archiv:1012.0221 $\langle \cos(\gamma) \rangle$

Test of Theory underlying TMDs

- Processes Universality vs non-universality:
 - ◆ Semi-Inclusive deep inelastic scattering ✓
 - ♦ Drell-Yan ✓
 - ◆ e+/e- annihilation ✓

 $p + p \rightarrow h1 + h2 + X$ arXiv:1102.4569

-Watch out for sign flips!

Twist-3 vs. TMD

- □ Different functional form for SIDIS Sivers-fct.
 - \triangleright node in k_T
 - > node in x

A. Prokudin, Z.-B. Kang in preparation

A_N for jets and/or direct photon will resolve things

Current

Sidis: p, <1GeV

If the contribution trom the twist-3 tragmentation tunctions dominates, one might even reverse the sign of the ETQS function?

$$A_N = A_N | PDFs + A_N | FFs$$

BROOKHAVEN NATIONAL LABORATORY If $A_N \mid FF > A_N$, sign of is $A_N \mid PDFs$ is opposite to $A_N \mid A_N \mid PDFs$